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STOKES MULTIPLIERS FOR THE
ORR-SOMMERFELD EQUATION

By W. D. LAKIN anp W. H. REID
The University of Chicago
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The comparison equation method is used to study the outer expansions of the solutions of the Orr—
Sommerfeld equation. All but one of these expansions are multiple-valued and must therefore exhibit
the Stokes phenomenon. One of the major aims of the present paper is to obtain first approximations
to the Stokes multipliers which describe the continuation of these expansions on crossing a Stokes line
in the complex plane. By restricting the domains of validity of these expansions appropriately we can
insure that all of the expansions are ‘complete’ in the sense of Olver and this is an essential feature of
the work. The resulting approximations show that, in some sectors, a sharp distinction can no longer
be made between approximations of inviscid and viscous type. A consistent first-order approximation
to the characteristic equation in the complete sense is derived and compared with the more usual
second-order approximation of Poincaré type. Calculations of the curve of neutral stability for plane
Poiseuille flow clearly show that a first approximation in the complete sense provides a substantially
better approximation to the neutral curve than a second approximation in the Poincaré sense.

’_J =

< S 1. INTRODUCGTION

5 - The stability of parallel shear flows is governed by the well-known Orr-Sommerfeld equation
=

ma (ieR)1 (D2 —a?)%p = (U—~c¢) (D2—a?) ¢ —U"¢, (1.1)

=

O where ¢(y)el*@= is the stream function of the disturbance in the usual normal mode analysis,

= uw

U (y) is the basic velocity distribution, R is the Reynolds number, and D = d/dy. In the study of
this equation for large values of «R, asymptotic methods of approximation have played an
importantrole and, in the early work on the subject by Heisenberg (1924), Tollmien (1929, 1947),
and Lin (1945, 1955), two different types of asymptotic approximations were obtained by some-
what heuristic methods. These approximations correspond to the leading terms of what would
now be called inner and outer expansions. Most of the existing calculations, however, have been
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326 W.D. LAKIN AND W. H. REID

based on the inconsistent but apparently successful procedure of using outer expansions for the
solutions of inviscid type and inner expansions for the solutions of viscous type but it is only
recently that a detailed study has been made by Eagles (1969) of the limitations of such mixed
approximations.

Attempts to improve on these older theories have generally been based on either the comparison
equation method or the method of matched asymptotic expansions, and it is of some importance
to discuss briefly the essential differences between these two approaches. In applying the method
of matched asymptotic expansions to the Orr—-Sommerfeld equation, as Eagles (1969) has
recently done in a very systematic manner, one is primarily concerned with what may be called
the central matching problem (cf. Wasow 1968), i.e. the problem of relating the inner and outer
expansions so that they represent different asymptotic approximations to the same solutions.
Since all but one of the outer expansions are multiple-valued, however, the solutions which they
represent must exhibit the Stokes phenomenon and this leads to a consideration of the lateral
connexion problem, i.e. the problem of determining the continuation of a given solution (or, more
precisely, its outer expansion) on crossing a Stokes line in the complex plane. These two problems
are closely related and, although Eagles (1969) did not consider the lateral connexion problem
explicitly, it should be emphasized that a complete solution to the central matching problem
must necessarily contain the solution to the lateral connexion problem but not conversely.

By using the comparison equation method, however, it is possible to determine the Stokes
multipliers in an indirect manner that avoids the need for a complete solution of the central
matching problem, and this is the approach that will be adopted in the present paper. The
comparison equation method has been extensively studied by Wasow (1953), Langer (1957,
1958), Lin (19574, b, 1958), Lin & Rabenstein (1960) and others. In all of this work the major
aims have been to obtain asymptotic approximations to the solutions of the Orr—Sommerfeld
equation that are uniformly valid in a bounded domain containing one critical point and to
develop an algorithm by which higher approximations can be systematically obtained. Theories
of this type are largely based on the idea of generalizing Langer’s (1932) well-known theory for
second-order differential equations with a simple turning point to higher-order equations of the
Orr-Sommerfeld type. This requires the development of a procedure by which the solutions of
the Orr—Sommerfeld equation can be represented asymptotically in terms of the solutions of a
suitably chosen comparison equation. The success of this method, however, crucially depends
upon being able to satisfy two closely related conditions. First, the comparison equation must be
sufficiently simple so that its solutions may be considered known, otherwise little would be
achieved; and, secondly, the solutions of the comparison equation must have asymptotic
properties that are close to those of the Orr—Sommerfeld equation in order to achieve the desired
degree of uniformity in the resulting approximations. These conditions severely limit the class of
flows for which the general theory has thus far been developed and would appear to exclude, for
example, asymmetrical flows with two critical points.

Although the present paper is closely related to the work of Lin (19574, b, 1958) and Lin &
Rabenstein (1960), our work differs from theirs in some important respects. The most significant
difference results from our insistence that all asymptotic expansions be ‘complete’ in the sense of
Olver (1961, 1963, 1964). The concept of a complete asymptotic expansion, as developed by
Olver in connexion with his theory of error bounds for asymptotic solutions of certain second-
order differential equations, is based on the observation that it is often more important to obtain
a first approximation that is valid in the complete sense than to obtain the whole of the descending
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STOKES MULTIPLIERS 327

series associated with the dominant term in the expansion. One consequence of this concept is
that different asymptotic expansions of a given solution must be restricted to non-overlapping
domains, the boundaries of which are Stokes lines, even though the expansions remain valid in the
Poincaré sense in larger overlapping domains.

Thus, the major aims of the present paper are to obtain first approximations to the Stokes
multipliers and then, using outer expansions only, to derive a consistent first approximation to
the characteristic equation that is valid in the complete sense.

2. TRANSFORMATION TO STANDARD FORM

A preliminary transformation of the Orr-Sommerfeld equation will first be made which
brings out explicitly the turning point nature of the problem. For this purpose we define the usual

Langer variable [3fy(U_c)%d F o)
/’7 B 2 Ye U:} y ’ '
where y, is a simple zero of U—c¢ and U, = U'(y,). Near y = y,, we have
_ 1 Ug , (YU 2 U 5
=YYt 157 W) +(Eﬁé_i75'[]cl2) (49 +-., (2.2)

so that 9(y) is analytic at y = y,.. Thus, if D, denotes a bounded domain in the y-plane containing
the critical point y,, then the relation (2.1) maps D, on a bounded domain D, in the -plane
containing the origin. We next define a new dependent variable y(7) by the relation

x(n) = ' (9} (), (2.3)

where the exponent of #’(y) has been chosen so that the transformed equation is in normal form,

", This definition of y(7) is the one that is most commonly made but it is

i.e. it does not contain y
clearly not essential and for some purposes a different choice might be preferable.

Under thischange of both dependent and independent variables, the Orr—Sommerfeld equation

becomes XY — (14 66) X' — (8 +68) X' = (hy+ ) x = O, (2.4)
where e = (iaRU,)~% (2.5)
and f3, g, ---, £y are all analytic functions of 7 in D,. If, for convenience, we let
y(m) =9"n", (2.6)

then we have

Si(m) = 3y 45y + 2023,

g(m) = —2yv,

a(n) = 5(yy +y") —daPyy' 2, (2.7)

ho () = — (5y + 5972 + 5y’ +aPyy’2)
and hy(n) = = eyt + 272 + 3y 2 = 3yy" = 3") +a2(§y2 =3y )y’ 2 —aty' 4

The behaviour of these functions near 97 = 0 is of crucial importance in the subsequent analysis
and we note, therefore, that

2(0) =0,  g(0) = =2y,  £y(0) = —574)
Si(0) £0,  g,(0) £0, 7 (0) * 0,
where Yo = v(0) = ¥(U:U7). (2.9)

30-2

(2.8)


http://rsta.royalsocietypublishing.org/

)\
C

A

|

S

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

&

L A

I §

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

328 W.D. LAKIN AND W. H. REID

Equation (2.4) is the required standard form of the transformed Orr—Sommerfeld equation
and provides the natural starting-point for the present analysis. We assume, as usual, that when
y is real U(y) is monotone increasing. In the case of neutral stability for which ¢ is real, we then
choose ph U, = 0 and phe = — L.

3. FORMAL CONSTRUCTION OF ASYMPTOTIC SOLUTIONS

The principle on which we now seek to construct asymptotic approximations to the solutions of
equation (2.4) is to express the solutions of this equation asymptotically in terms of the solutions
of a suitably chosen comparison equation, the solutions of which are considered known. In this
approach there are then two closely related questions that must be considered. One concerns the
choice of the comparison equation and the other the general form of the expansion.

Following Lin & Rabenstein (1960) we choose a comparison equation of the formf

UV — (qu" +au' + fu) = 0 (3.1)

in which o and £ must be allowed to be asymptotic power series in € of the form

@= 3 a,e and f= 3 f,en (3.2)
n=0

n=0
A cursory comparison of equation (3.1) with equation (2.4) suggests that
oy =g0(0) =0 and By =hy(0) = —U|UL,. (3.3)

These are, in fact, the correct choices for ¢, and f,; more generally, however, the coeflicients in
the expansions (3.2) are determined by certain regularity conditions which will be discussed
shortly. The solutions of the comparison equation (3.1) have been discussed previously by
Rabenstein (1958) and they are discussed further in the appendix in a form more suitable for
the present purposes.

Consider next the problem of representing the solutions of equation (2.4) in terms of the
solutions of equation (8.1). This problem has also been discussed by Lin & Rabenstein (1960)
who showed that the required form of the expansion can be deduced from the fact that the
reduced forms of equations (2.4) and (3.1) obtained by formally letting € - 0 are both of second
order. More generally, as Langer (1957) has observed, equations (2.4) and (3.1) have at least one
formal solution which is a power series in €* with coefficients that are analytic in D,. "This obser-
vation then suggests that the required expansion must be of the form

x = Au+ Bu'+ €3(Cu” + Du"), (3.4)

where u is a solution of the comparison equation and the coeflicients 4, B, C and D are all
asymptotic power series in e of the form

A= i::o A, (7) e, (3.5)

The success of this method depends, of course, on our being able to choose the constants o,
and 8, (n=0,1,2,...) so that all of the coefficients in the expansion (3.4) are analytic in D,.
The form of the expansion actually used by Lin & Rabenstein (1960) differs somewhat from (3.4),
the major difference being that they expanded « in terms of y and its first three derivatives. The

+ The o appearing in this equation is not related to the wavenumber.
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STOKES MULTIPLIERS 329

more direct form of the expansion adopted here would appear to be more natural and simplifies
the comparison of the present results with those obtained by other methods of approximation.
To determine the coefficients in the expansion, we first substitute equation (3.4) directly into

equation (2.4) and use the comparison equation to eliminate #V. The requirement that the

coeflicients of u, «’, u”, and u"

u: RyA = B(4B' + 29D’ +3D +aD —g,D) + (f—f,) 4
+ €3{AY 4 64C”" + 4D" — f,(A" + BC+ 28D") — g, (A’ + BD) — b 4}, (3.6)
u': RyB—4aB' = —294"—gyA+a(A+29D"+3D+aD —g,D) + (f— £, B
+ €3{44" + BY + 6aC" + 4pC’ + 4aD" + 6D"
—f(24' + B" +aC + 20D’ + D) — g,(A+ B' + aD) — b, B}, (3.7)
u's 29B'+ (1—go) B+292D" + (3—go)nD
= —a(B+9D) —e¥6A4" +4B" +57C" +4C’ + 4aC’ — g,C’ + C
+49D" 4+ 6D" 4 6aD" + 45D’ — hyC— f, (A + 2B' +9C+ 29D’ + D + aD)
—&(B+D)}— €8 (CV = f,C" — g,C" — 1y C), (3.8)
u”": 44’+6B"+29C’ +2C+ 5yD"+8D'+ D
= —a(C+4D") +gy(C+D") + hyD + f1(B + D)

all vanish then leads to the equations

—e3{4C" + DV —f,(2C" + D") — g,(C+ D'y — hy D}, (3.9)

d2 d
where R,=1 3—7;5_'_&)(77) & +{ho(n) = fo}- (3.10)
We next substitute into these equations the expansions for 4, B, C and D and, to lowest order,
we obtain Rydy = Bo(4B}+ 29Dy + 3Dy + ot Dy — g4 D), (3.11)
RyBy—4ayBy = —29Ay—goAg+ ag(dg+29Dg+ 3Dy + 0y Dy — g0 D), (3.12)
29By+ (1 —go) By+292Dg+ (3 —go) 1Dy = —ay (By+13D,) (3.13)

and 447+ 6By + 29Cq + 2Cy + 59D+ 8Dg + S,D,
= — 0y(Co+4Dy) + g4 (Coy+ Dg) + by Dy + f1(By +5Dy). (3.14)

Even these first-order equations have a somewhat complicated structure but, fortunately, they
can be substantially simplified and partially uncoupled.
Thus, consider equation (3.13) which can be integrated immediately to give

By+ 1D, = constant =1+ '~1, (3.15)

Since B, and D, must both be analytic at # = 0, the constant in this equation must vanish unless
oy = — 3, — 5, .... Even these special values of &, can be excluded; for, if we require as we must that
the expansion of ¥’ has the same general form as equation (3.4) then we find that B + 7D must be
of order €3 and hence, quite generally, that

By+4D, = 0. (3.16)

If this relation is now used to eliminate B, from equations (3.11) and (3.12) then we obtain two
coupled equations for 4, and D, the solutions of which can be analytic at # = 0 if and only if

we choose oy = 0 and ﬂo = }LO(O) = — Ug/Uc' (3‘17)
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330 W.D. LAKIN AND W. H. REID

in agreement with equations (3.3). The equations for 4, and D, thus simplify to
Ry dy = — fo{27Dy + (1 + go) Do} (3.18)
and Ry (nDy) = 2945+ gy 4, (3.19)
The role of the operator R, in these equations is of particular interest; for, with the choice of 3,
that we have made, R, comes from transformation of the operator
U—c(d2 2) U -u,
— — — a p—
U, \dy? u. ’
which is simply a regularized form of the Rayleigh stability operator.
In discussing the solutions of the equations (3.18) and (3.19) we shall require, of course, that

4, and D, both be analytic at # = 0. It then follows immediately that 4, is of order unity and D,
is of order 9 near # = 0. Without loss of generality we can choose 4, (0) = 1 and these equations

(3.20)

then admit a one parameter family of solutions in which the parameter may conveniently be
taken as A4, (0). Again, without loss of generality but with considerable simplification, we can
choose 43 (0) = 0. The values of 4,(0) and 4; (0) chosen here are related to, and consistent with,
the normalization conditions that will be imposed later on the ‘inviscid’ solutions of equations
(2.4) and (3.1). With these conditions we then have

17U 1157U,*
Aol) = 1+(z—s*ﬁﬁmﬁ%+%“2) 7HO) (3.21)
1U; (58U 1100U2 | N\ 5 o
= =1+ 77 — 5100 7R T E 2
and Do) 5U;’7+(14U; 2100U52+3°‘)’7 O (5.22)

These results could, if required, be used to provide starting values for the direct numerical
integration of equations (3.18) and (3.19). As Lin (1958) has shown, however, 45 and D, can both
be expressed explicitly in terms of the ‘inviscid’ solutions of equations (2.4) and (3.1), though the
existence of such a representation is by no means obvious merely from an inspection of the
differential equations (3.18) and (3.19).

On using these results in equation (3.14) and then eliminating Dy by using equation (3.19)

we obtain (

45+7) (1Co+4y=Dy) = . (3.28)

This equation can, of course, be immediately integrated and the condition that C, be analytic at

= 0 then gives 1/1
C _—~(—,—A +D). 3.24
0 n\7y 0 0 ( )

We have thus succeeded in reducing the set of first-order equations (3.11) to (3.14) to the pair of
coupled differential equations (3.18) and (3.19) for 4, and D, with B and C, given explicitly in
terms of 4, and D, by equations (3.16) and (3.24).

There is, of course, no difficulty in writing down the higher-order sets of equations for 4,,, B,,
C, and D, (n > 1) that follow from equations (3.6) to (3.9) but they rapidly become far too
complicated for complete analysis. In the present theory, however, B, is required (but not 4,
C, or D,) and we shall therefore consider only briefly the set of equations of second order. Thus,
from equations (3.6) to (3.9) we have

Ry Ay = Bo(4By+20D1+ 3Dy +ay Dy — gy Dy) + 1 Ay + AY + 6, Co + 4, Do
—f1(Ao+ By Co + 2B, Dg) — g1(Ao + Bo Do) — Iy Ay, (3.25)
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Ry By = — 2947~ gydy + oy (dy+ 485+ 21D + 3D, — gy Dy) + fy By + 445 + By + 44,Cy

+643, Do — f,(244+ By +BoDy) = g1(4o+ By) — by By, (3.26)
29 By + (1 —gy) By + 292D1 + (3 —g0)9 Dy

= — (644+ 4By +59Cy+4C) — g, Ch+ By Co+ 47Dy + 6D+ 48, D — hy Cy)
+f1(Ay+ 2By +9Cy + 29D + Dy) (3.27)
and
441+ 687 + 29C1 + 2C, + 59D} + 8Dy + By Dy + 1D,
= — o1 (Cy+4Dy) +8o(Cy + D7) + by Dy +1,(By +9Dy) — (4C¢" + D)
+£1(2Cg + Dg) + g,(Cy+ Dg) + by Dy, (3.28)

In spite of the complicated appearance of these equations, their general structure is very similar
to that of equations (3.11) to (3.14). Thus, equation (3.27) can be immediately integrated and
the condition that B; and D, be analytic at # = 0 then gives k

’

1 L/
BrnDy = g [ M) b, (3.20)

where M, (5) denotes the right-hand side of equation (3.27). The quantity M,(y) is analytic in
D, and depends only on the known coefficients 4, By, Cy, D, and their derivatives.

If equation (3.29) were now used to eliminate B, from equations (3.25) and (3.26) then we
would obtain two coupled equations for 4; and D,, the solutions of which can be analytic at
7 = 0ifand only if &, and B, are properly chosen. The required value of o, can be found without
difficulty and it is perhaps of some interest to do so even though it is not required in the present
theory. For this purpose consider equation (3.26). Since 4; and B; must both be analytic at
7 = 0, the constant term in the power series expznsion of the right-hand side of that equation
must vanish and this is the condition that determines e;. Thus, we have

oy 4y(0) + 445 (0) + By (0) + 4,C5(0) + 68, Do (0)

—/1(0) {245(0) + Bo(0)} — £1(0) 4,(0) = 0, (3.30)
which shows immediately that the value of «, is independent of %,(0), i.e. it does not depend on
UY. At first glance it might appear from this equation that «; depends on the way in which we
have normalized 4,(7). A somewhat more detailed study shows, however, that the value of o,

is indeed invariant with respect to the normalization of 44(#). A straightforward but lengthy
calculation then gives Uy Uy’

This unexpectedly simple and beautiful result shows that «, is independent of a? and that it
vanishes for both plane Poiseuille flow and the asymptotic suction boundary-layer profile. The
corresponding determination of f;, however, would appear to be much more difficult (in part
because 8, depends on UJ%), and we have found no simple way of determining its value.

From the foregoing discussion it is clear that, in this method of determining the coefficients in
the expansion, B, cannot be found without first solving the coupled differential equations satisfied
by 4, and D;. Once this has been done, however, C; can then be obtained immediately from
equation (3.28) by means of a single quadrature. It is also of some interest to notice that the
value of B;(0) can easily be obtained. Thus, on setting % = 0 in equation (3.27) we have

B,(0) = —645(0) +/1(0) 4(0) — 483 (0) — 4C5(0) — 6Do(0) — 443, Dy (0) (3.32)


http://rsta.royalsocietypublishing.org/

0
%

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

/|

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

332 W.D. LAKIN AND W. H. REID

and a short calculation then gives
m ”2
B,(0) = Uu' 11U,

A S Y § 3.33

An explicit determination of B; will be obtained later in §6 by a different method which avoids
any reference to 4;, C; or D,.

4. APPROXIMATIONS TO THE INVISCID SOLUTIONS OF TOLLMIEN TYPE

The coefficients in the expansion (3.4) can also be determined by matching the uniform
approximations in suitably restricted domains of the #-plane to outer expansions of the more
familiar type. This indirect method was first suggested by Lin (19574) and leads to a somewhat
more explicit representation of the coefficients in the expansion. It also avoids the complicated
sets of coupled differential equations that occur naturally in the direct method described in the
previous section. The required outer expansions are of the usual inviscid and viscous types but
we shall restrict their domains of validity so that they are complete in the sense of Olver. Further-
more, to derive a consistent approximation to the characteristic equation it is necessary to obtain
these outer expansions to a somewhat higher order of approximation than is usually done.

Consider then the inviscid approximations which are obtained by a formal expansion of the

x(m) = xO0n) +xPn) + ... (4.1)
To first order we have (D24 goD +2y) x© = 0, (4.2)

form

where D = d/d#. Thisissimply Rayleigh’s stability equation written in terms of the new variables,
and its solutions can conveniently be written in the form

X20m) = 7Q:(n), (4.3)
and x30(n) = @a(n) + (US| U2) x{(n) Iny, (4.4)

where @,(7) and Q,(7) are power series in 7 with leading terms of unity. To make y{?(y) definite
we suppose, as usual, that @,(n) contains no multiple of ¥{?(7), i.e. that the coefficient of the
linear term in Q,(7) is zero. A simple calculation then gives

7 U,

LUy 3 U2 |\,
Q1("7)—1+T67;77+(1—U‘07—mﬁé—2+3“)77 +. (4.5)
_ 170 1927 U2 12) e
and Qs(n) = 1+(§§vj“1‘1‘66—§+ o )77 (4.6)

With this normalization, y{®(7) and x{(5) are related to the corresponding solutions ¢{0(y)
and ¢{”(y) of Rayleigh’s stability equation by the relations

O(y) = {n' ()} 2x{O(n) (4.7)

4

and B0(5) = I () H P 0) + 5 75 100, (4.9

where ¢{%(y) and ¢{7(y) have their usual normalization (cf. Reid 1965). We also note that the
Wronskian of these solutions is a constant with the value

W(x{®, 9 = —1. (4.9)
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It is also of some interest to consider briefly the second approximation to y;. Thus, to second
order we have (1D2+ D +ho) X = (D* = /D2~ g D — ) . (4.10)

We require that the solution of this equation be analytic at # = 0 thereby excluding a multiple
of x4® and, to fix the normalization, we suppose that it contains no multiple of y{®. A short

calculation then gives XO(y) = — (UN|UY) + 302+ 0(72). (4.11)

Since x4”(#) has a logarithmic branch point at 4 = 0, it cannot provide a uniform approxi-
mation in a closed sector of angle 277 and its domain of validity is normally taken to be the sector
—Zm < phy < }m. In parts of this sector, however, it is not complete in the sense of Olver and
we shall therefore further restrict its domain of validity to the smaller sector —$m < phy < —;
it does, of course, remain valid in the ordinary Poincaré sense in the larger sector. Since this
smaller sector contains neither of the boundary points, it will therefore be necessary to obtain the
continuation of x4{®(%) across the lines which bound its sector of validity. This will be done later
in §7 by use of the comparison equation.

5. APPROXIMATIONS TO THE VISCOUS SOLUTIONs OoF W. K. B. TyprE

Consider next the W.K.B. approximations to the viscous solutions of the Orr—-Sommerfeld
equation which can be derived in the usual way by letting

#() = exp | [ o(y) dy), (5.1

so that g(y) satisfies the third-order nonlinear equation

"

g+ 6% +4g¢" + 3¢ +¢" —20%(8* +¢) + ot = 67° {(QU;C) (gt~ _%} (5.2

Approximations to the solutions of this equation are then obtained by assuming a formal expan-
sion of the form 2(y) = e3go(9) +21(9) + ¥ga(9) + ..., (5.3)

In the usual discussions of approximations of this type only g, and g, are determined from which
first approximations of W.K.B. type are then obtained. In the present theory, however, we need
second approximations of this type and we must therefore also determine g,. If the expansion
(5.8) is now formally substituted into equation (5.2) and the coeflicients of like powers of ¢? are
equated to zero then we obtain a sequence of equations from which g, g, ... can be determined
algebraically. The first three equations in this sequence are

U—c¢
48 (g% ‘“-U“c/—) =0, (5.4)

U—c¢ U-c¢c\ ,
28, (25’(2)——[‘]/*) &= —(Gg%— o )go: (5.5)

U—c¢ U—c\, , , "
24, (2&% - ﬁ) &= — (Gg% - T) (g1+48) — 12208081 — 48020 ~
Ue ¢ 19 22 pU—c U
—3g% + 2a2g2 —a o (5.6)
From equation (5.4) we see that either g§ = 0 or g§ = (U—¢)/U,. If g, = 0, then equation (5.5)
vanishes identically; equation (5.6), however, becomes
U-c¢ U’

U (g1+45—a?) — U

=0, (5.7)

a1 Vol. 268. A.
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which is simply a first-order nonlinear equation equivalent to Rayleigh’s stability equation and
we thus recover the usual inviscid solutions. Otherwise we have

_(U—=c\? 5 U
o) = () e = -sp
S (5.8)
U, Vo1 U\ 13U,
and &) =*\g=) e \v=d) ~sv=7 )

where the signs of g, and g, are ordered. The branch of the square roots is fixed, for convenience,
by placing a branch cut along the Stokes line

2ph jj{w—c)/w;}%dy -

near the critical point, the branch cut approaches the line ph (y —y,) = 4.
On substituting these results into equation (5.1) we obtain two solutions which can be written
in the form

Faly) = bt et () exp =AU - A Gy(0) +0() (5.9)

and B =itetet () Tep s QU G HOE),  (510)
Yy —c\?

where | Q(y) =f(%) dy (5.11)

and

9% U, v(( U, \¢[101/ U" \* 13 U"
=101y VR4 Ty )E e ) == == — 12
GZ(.I/) 48 (y yc) + 64 UCI (y yc) : J\ ‘(U—()) [ 32 (U—-C) 8 U—c¢ 2% ]

Ye

1 5[101( 1 )2 95 U, 1 ]}
- — +———5——Ndy. (5.12
(y—yc) 32 \y—y,) T128 U y—y)| Y (5:12)

In writing the solutions in this form we have, without loss of generality, fixed the normalization

in a way that would appear to be particularly convenient. Thus, following Eagles (1969), we
have defined G,(y) so that its expansion about y = y, contains no constant term. The remaining
factors and signs in equations (5.9) and (5.10) have been chosen primarily to emphasize the close
relation between these outer expansions and the familiar inner expansions of Airy function type.

The W.K.B. approximations to the solutions of equation (2.4) can easily be obtained by the
same method. On fixing the normalization in the same way, we have

Xs(1) = ybely~tyexp (—Fe~ind) {1 - et Hy(y) + O(c)} (5.13)

and Xa(n) = idwdely 1y-texp (+2ei9gd) {1+t Hy(n) + O(e%)}, (5.14)
where

Hy(n) = 4=+ (U Ue) 4~ f Z By =yt =2y +3y2 — a2y y~tdy  (5.15)

and the branch of the roots is again fixed by placing a branch cut along the ray phy = }m. It is
easily verified by a direct calculation that G,(y) = H,(n) and hence, at least to second order,
$5(y) = Xs(n) and B4(y) = Xa(n).

In discussing the domains of validity of these solutions the Stokes and anti-Stokes lines, which
are associated with the exponential factors in the solutions, play a particularly important role.
These lines are defined by the conditions Im (e~27%) = 0 and Re (e~29%) = 0 respectively (see
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figure 1). Consider first the solution ¥,(#) and let the branch cut be shifted temporarily to the
anti-Stokes line ph % = &m. Then ¥, (7) is recessive in S; but dominantin S, and S, and its domain
of validity is normally taken to be the open sector of angle 21 excluding the ray ph#y = $mw. The
same conclusion can be reached without moving the branch cut by applying phase-integral
theory (cf. Heading 1962), but it is then necessary to allow for a change in the form but not the
value of ¥;(7) on crossing the branch cut. In parts of this sector, however, it would appear that

D,
|
C C !
|
1 S3 2 I

P
S, S; 70O
N
P T; N
Dy Sp,
Cs

Ficure 1. The anti-Stokes lines (left) and the Stokes lines (right) in the y-plane.

i
i
I
I

Ficure 2. The restricted sectors of validity of X () (left), s (7) (centre) and ¥, () (right) in which they
are complete asymptotic expansions. The heavy dashed lines denote branch cuts.

%¥3(7) 1s not a complete asymptotic expansion and we must therefore restrict its domain of
validity appropriately. A rigorous justification of this step cannot be given at the present time
since that would require a theory of error bounds and such a theory has not yet been developed
for equations of the Orr—Sommerfeld type. Olver’s (1961) work on error bounds for W.K.B.
approximations to the solutions of second-order differential equations strongly suggests, however,
that we restrict the domain of validity of ¥;(%) to the smaller sector —32mw < ph# < i the
boundaries of which are Stokes lines. Similar considerations suggest a restriction of ¥,(%) to the
sector —3m < phy < —§m. The corresponding domains of validity of @,(y) and ¢,(y) in the
y-plane then follow immediately from the foregoing discussion by simply replacing ph# by

$ph f:{w—c)/U.;}%dy.

These results, as well as those obtained in §4 for x{?(#), are summarized in figure 2.

31-2
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336 W. D. LAKIN AND W. H. REID

6. DETERMINATION OF THE COEFFICIENTS
IN THE EXPANSION BY MATCHING

In §3 we derived the differential equations satisfied by the coefficients in the expansion (3.4)
but, because of the rather complicated structure of those equations, a complete discussion was
given only for the first four coefficients 4,, B,, C, and D,. Furthermore, the determination of B,
which is required in the present theory, could not easily be done by that method. An alternative
approach to the problem of determining the coeflicients in the expansion has been suggested by
Lin (19574) which not only recovers the results obtained in § 3 but also easily leads to an explicit
determination of B,. In this method, outer expansions to the solutions of the comparison equation
are used in equation (3.4) and the resulting expressions are then matched, in appropriate
sectors of the #-plane, to the inviscid approximations of § 4 and the W.K.B. approximations of § 5.

In discussing this matching method it is convenient to let jy, (k = 1, 2, 3, 4) denote the uniform
approximations obtained from the expansion (3.4) by using the exact solutions %, of the com-
parison equation (cf. equations (A 24)). These uniform approximations are, of course, valid
throughout the whole of D, but, since we have only integral representations for the exact solutions
of the comparison equation, they are of a much too complicated form to be used in actual calcu-
lations. Once the necessary coefficients in the expansion (3.4) have been found, either by the
differential equation method discussed in §3 or by the matching method to be discussed in this
section, we can use the outer expansions of the u; to obtain the corresponding outer expansions of
the ¥, from which the Stokes multipliers can then be immediately obtained.

To simplify the present discussion we will use the fact that B+ 5D, = 0. The outer expansion
of ¥, must clearly be of the form y; = ¥{? + O(€?) for all values of ph# and hence

X0 = Aoui® = Doui®.

Furthermore, since ¥{? is well-balanced, it can differ from y{® by at most a multiplicative factor.
Similarly, the outer expansion of ¥, in T3 must also be of the form F, = ¥{”+ O(¢?) so that
N0 = Aju® —nDyuf® and clearly it must be possible to express ¥{? as a linear combination of
X{9 and y4?. Thus, 4, and D, are determined by the equations

Aguf? = Doui” = e, x{”  (nel), (6.1)

and Ayuf® —nDouf” = cox {0+ ¥ (n€Ts), (6.2)

‘where the constants ¢,, ¢, and ¢, must be chosen so as to make 4, and D, analytic at 4 = 0. Since
W(u® ul® = —1, we have

Ay = (eox{”+ o x8”) u{” — oy ¥ {Oug® (6.3)

‘and 1Dy = (coX1i¥ +ca x5”) uf? — ¢y ¥ {Vug”. (6.4)

The condition that 4, and D, be analytic at # = 0 requires only that ¢, = ¢, and it can easily be

verified that these expressions for 4, and D, then satisfy the differential equations (3.18) and

(3.19) for arbitrary values of ¢, and ¢,. As in § 3, we can, without loss of generality, choose ¢; = 1;

this is also perhaps the most natural choice in view of the way in which #{® and y{® have been
normalized. From equations (6.3) and (6.4) we then have the initial values

4y(0) =1, A4y(0) = ¢, Dy(0) =0 and  Dy(0) = ¢o—% (Ue/Us), (6.5)

which thus define a one parameter family of solutions of the differential equations (3.18) and
(3.19). Since u{® and y{® have been defined so that their regular parts contain no multiple of u{®


http://rsta.royalsocietypublishing.org/

PN

s |

/

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

/|

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

STOKES MULTIPLIERS 337

and y{® respectively, it is again natural and convenient, as in §3, to choose ¢, = 0. With these
values for ¢, ¢, and ¢, we can rewrite equations (6.3) and (6.4) in the forms

Ay(n) = Qa(n)uf” () — Q4 (7) {regular part of ui® ()} | (6.6)
and 7Dy(n) = Q5(n)u{®(n) —7Q4(n) {regular part of u{”(7)}, (6.7)

where the regular part of (%) can be found from equation (A 28). These expressions show
explicitly that 4, and D, are both analytic at # = 0. Furthermore, the power series for 4, and D,
obtained from them are in complete agreement with the results given in §3.

Thus we have two quite distinct methods of determining 4, and D,: one based on the solutions
of two coupled second-order differential equations and the other based on the solutions of two
singular second-order differential equations. It may be noted, however, that given the two
coupled equations, as in § 3, but without any knowledge of the matching method just described,
it is by no means obvious how one could obtain the required solutions in the form of products of
the solutions of two singular but uncoupled equations. Although it is unnecessary in the present
theory to actually compute 4, and D,, and we have therefore not studied the computational
problem in any great detail, it would appear that the two methods involve comparable amounts
of work.

Consider next the determination of C; and B, by the matching method. For this purpose it is
convenient to note first the inner expansion of y; which follows from equation (A 9) in the form

Xa(1) = e=*{(do— Do) 41(&, 1) + €[ Bo( Ao — 2Dy) 41(§, 2) + Co 41 (& — 1))
+ e[ 348 (Ag—3Dy) 4i(&, ) +(BoCo—B1) 4:(§,0)] +0(e?)}.  (6.8)
On re-expansion of this result in the sector |ph {| < 21 or by a direct calculation using equation
(A 12), we obtain the outer expansion
Ba(n) = dmtemettytexp (—§e~inh) [y — Do +9C, — {45 (4y— Do)t
+[5Co— Bo(Ao—2Do)117% — (B, Co— By)nt}et + O(e?)]  (n€Ty U Ty). (6.9)
It is particularly interesting to note the manner in which C, and B, appear in these expressions.
For a first approximation of the outer type it is clearly necessary to determine C, and for a second
approximation one must also determine B;, though this was certainly not obvious from the
discussion of § 3. The matching principle then asserts that, in the sector T, U T, the outer expan-

sion of }3 must be a multiple of the W.K.B. approximation (5.13). More precisely, we have
Xs = ¢3Xs, where ¢; must, in general, have an asymptotic expansion of the form
@

cs(€) = €7 3 (—1)ncm eln, (6.10)

n=0
To first order the matching implies that
Ay—Dy+1Cy = ¢y’ 1, (6.11)

and the condition that C; be analytic at # = 0 then requires that ¢{® = 1. Thus we have

1/1
C, = 5(7—7«,—A0+D0) (6.12)

in agreement with equation (3.24). To second order the matching implies that

45 (Ao = Do)t + [55Co — Bo(Ao — 2D) 14 — (B Co — Br)y} = (1/7') {Hy(y) — e}, (6.13)
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and the condition that B; be analytic at # = 0 then requires that ¢{V = 0. This value of ¢{ is
essentially a consequence of the way in which the W.K.B. approximations have been normalized
and, more specifically, of the fact that there is no constant term in the expansion of Hy(7) about
7 = 0 [cf. also equation (A 12)]. After some simplification we obtain

1 K
By = —=2(dy—Dy— ")y = fo(Do+ 49 )yt —n'"1y% f , By=ya ™
— 13y + Byt — a2y Hytdy, (6.14)

Ur 17U

from which we also have B,(0) = — ARTR I
4 4

+ gat (6.15)

in agreement with equation (3.33). This expression for B, is somewhat complicated and it is
perhaps not altogether surprising that we were unable to obtain it in a simple way from the
differential equations derived in §3.

In this method of determining B;, no reference has thus far been made to the value of a;. We
can, however, now give a somewhat simpler method of finding its value. From the expansion
(3.4) we can easily derive the relation

X30(0) = 4,(0) «{(0) + By (0) u{?(0) + Cy(0) u{0"(0), (6.16)
in which all quantities are known except #{"(0). Now u{V satisfies the inhomogeneous equation
T+ fof? = a0 — oyl — By, (6.17)

and since u{V is analytic at # = 0 we find, on setting # = 0 in this equation, that

ufP(0) = —4f§—oufio . (6.18)
A short calculation then confirms the value of «; given by equation (3.31).
The matching principle further asserts that, in the sector T; U Ty, the outer expansion of y,
must be a multiple of the W.K.B. approximation (5.14). Thus, if we let ¥, = ¢,¥,, then a similar
analysis shows that ¢, must also have an asymptotic expansion of the form

ca(e) = e 3 of ein, (6.19)
n=0
Having determined the outer expansion of y, in T, ¥5in Ty U T3 and ¥, in T, U T;, we must
now consider the problem of determining their outer expansions in the complimentary sectors
T, U T,, T; and T, respectively. This is really the crucial step, as will be seen in the following
section, in the determination of the Stokes multipliers.

7. THE STOKES MULTIPLIERS

The outer expansions of Vs, V5 and ¥, which were derived in the previous section are valid in
the complete sense of Olver in the sectors T, Ty U T, and T, U T; respectively.t On crossing
the Stokes lines which bound these sectors, however, a change takes place in the form of the
outer expansions in accordance with the well-known Stokes phenomenon. To obtain the outer
expansions of Yy, Y3 and ¥, in the sectors T, U Ty, T, and T, respectively we must now make
explicit use of the connexion formulae for the solutions of the comparison equation.

t They remain valid, of course, in the ordinary Poincaré sense in the extended sectors S; U S,, I—C,; and

I—C, respectively but the errors associated with the expansions may be expected to become arbitrarily large near
the boundaries of these extended sectors.
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Consider first the behaviour of ¥, whose outer expansion is purely balanced in T;. On crossing
the Stokes line D, from T3 to T,, the outer expansion of ¥, must pick up a multiple of ¥; which is
maximally recessive on Dy; similarly, on crossing D, from T to T, it must pick up a multiple of
Xs which is maximally recessive on D,. Thus we can write

sa(€) X (neTy)
No = X"+ 0(e%) +{s3(e)Xs  (1€Ty) , (7.1)

0 (neTy)
where ph 7 is restricted to the range — 31 < ph# < }m and the Stokes multipliers s; and s, must,
in general, be allowed to depend on € asymptotically. The asymptotic expansions of s; and s,
depend, of course, on the way in which y{®, ¥; and ¥, are normalized. Once they have been
determined for a given normalization, however, the corresponding expansions for any other
normalization can easily be obtained from them. Thus, from equation (A 26), we immediately

obtain s3(€) = —2mifyecs(e) and  s,(€) = 2mif,ecy(€) (7.2)
or, to first order,

s3(€) = —2mif e{l + O(e*Ine€)} and s4(€) = 2mif,e{l + O(e*Ine)}. (7.3)

Consider next the behaviour of 3 whose outer expansion isrecessive in S, and purely dominant

in (T, U T3) —S;. On crossing the Stokes line D, from T to T,, the outer expansion of ¥; must

pick up not only a multiple of ¥, which is maximally recessive on D, but also multiplies of the

outer expansion of y; and the balanced part of the outer expansion of ¥,. Thus, from equation
(A 21), we have

o = 63(6) Fo = ea(0) Tat 52(6) (10 + O()} +52(6) P+ O(e0)}  (eTy),  (1.4)

where s1(€) = —€14+0(e?) and s,(€) = O(e?). (7.5)
Similarly, from equation (A 22), we have

Xa = ¢4(€) Xa—03(€) Xa+51(€) {x{” + O(%)} +55(€) {¥{¥+ O(6°)} (7€ Ty). (7.6)

For purposes of deriving the characteristic equation and to simplify the subsequent calcu-
lations, it is desirable to transform these results back to the y-plane. Thus, if we let

{B1s B B3, B} = 02 {¥y, Xa+ 5(Ue | Uz) Xy Vs X} (7.7)
then the corresponding outer expansions of the ¢’s can immediately be obtained in the form
¢ = 0+ 0(e*) (yel), (7.8)
sa(€)fs (yeTy)
$o = 0+ 0(®) +153(¢) §s  (y€Ty) s (7.9)
0 (yeTs)
- ~ca(€) Ba+51(€) p0+ 0(e?)  (yeTy) }
- 7.1
bs = () | . ) (7.10)
- —c3(€) G3+51(€) p7+ 0(e?)  (ye'Ty) }
= . 7.11
and ¢4 64(6) ¢4+ { 0 (yET1 U T3) ( )

In the y-plane, of course, the Stokes and anti-Stokes lines are no longer straight; near the critical
point y,, however, they have the same arrangement as shown in figure 1.
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340 W.D. LAKIN AND W. H. REID

8. THE CHARACTERISTIC EQUATION

We now wish to derive an approximation to the characteristic equation based on the outer
expansions (7.8) to (7.11). For symmetrical flow in a channel we suppose that U(y) is monotone
increasing on the interval y; < y < y, and for an even solution we have the usual boundary

conditions p=¢ =0 at y=y, and ¢ =¢"=0 at y=y, (8.1)
The solutions ¢, and ¢, are dominant at y, and y, respectively. But if , is substantially closer to
y, than to y,, asitis in most problems, then |@,(y,)| > |#3(y;)| and with a very small error we can

therefore reject ¢,. This approximation merely reflects the fact that, except near y, and y,, the
solution has a largely inviscid character. Thus we let

¢ = A¢1+¢2+C¢3’ (8'2)
where the coefficient of ¢, has been chosen to be unity to fix the normalization.
In applying the boundary conditions at y = y, we can, consistent with the rejection of ¢,, also
neglect ¢4 and its derivatives since they are very much smaller than all terms retained in the
subsequent analysis. Thus, near y,, we have

¢ = A¢0+ 30+ 0(e%). (8.3)
If, as usual, we now let ® = 4¢{® + ¢ then 4 is determined by the condition ®’(y,) = 0, i.e.
A= -3 (y,)|${¥(y,). For small values of @ and ¢ we note that

A(e,c) = Ula2{1+ 0(a?,¢)},

Y2 (8.4)
where I, = f U?dy.
Y1

In this approximation, the boundary condition ¢”(y,) = 0 is automatically satisfied because of
the symmetry of U(y).
In the sector T,, which contains y,, we then have from equations (7.9) and (7.10)

¢ = O+ 0(6%) +s4(€) By + Cle(€) Py —cal€) o+ 51(€) 317 + O(e2)} (8.5)
and the required approximation to the characteristic equation can therefore be written in the
form

O’ (y2) + 0(¢°) +54(6) Ba(y1) _ es(6) B3 (91) —cal€) Fa (91) +51(€) 7 (91) + O (&%) (8.6)

(1) + O(€%) +54(€) Ba(y1)  ¢3(€) B3 (91) —cal€) Ba (1) +51(€) 310 (91) + O(e?)
Although this is a convenient form in which to write the characteristic equation, it does not
exhibit in any very explicit way the relative orders of magnitude of the terms which appear in it.
A more useful form for the present purposes can be obtained, however, by first rewriting equation
(8.6) as the difference of two products. On substituting for ¢, and @, from equations (5.9) and
(5.10) and neglecting terms of order €3In € or €% compared to unity, we then obtain

Ay(71) exp{— e Q(y1)} +As(y1) +Ag(yy) exp{eQ(y1)} = 0, (8.7)

where Ay(y) = 1+¢t [(gﬁ:,l)-% (% +§~Ug£—;)—02(y)]+0(e3ln €), (8.8)
—c\i

Ay(y) = 2t (F5) g1+ 0(en) (.9)

aa =ig {1-(%) " (5 + 1) -Gt | +0emal, 10

and Y = @ —2mif, {0 (8.11)
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In the derivation of this form of the characteristic equation there is one important point which
should be especially noted. Consider, for example, the dominant term in equation (8.7) which,
to within a multiplicative factor, is obtained from ¢;(€) {®'(y) @5(y1) — @ (y,) P3(y)}- In this
expression ® and @' are both of order unity but @; is larger than @5 by a factor of order 5.
Accordingly, to obtain a consistent approximation to A,(y,) it is necessary to retain two terms in
@3 but only one term in @,. Similar remarks also apply to the balanced and recessive terms in
equation (8.7). This manner of ordering terms in equation (8.7) has some important implications
which will be discussed later in this section.

Equation (8.7) can also be written in a somewhat more explicit form which is particularly
useful for computational purposes. Thus, if we introduce the usual variables

Z =c¢(aR|U2)} and £ = (aR)} {2f ]U——cl%dy} (8.12)
where Z and 2 are real and positive in the case of neutral stability, then equation (8.7) becomes
Ay(yy) exp (§ 2¥e=™) + Ay(y1) + Ag(yy) exp (—§2Eei™) = 0, (8.13)
[c ®(y) 5 . oF

=1teimz-#|-L I 9,5 O ~3
where A(yy) = 1+e™Z [Ui(b(?ll) 1t RTIf Gz(yl)]+0(Z InZ), (8.14)
Ay(yy) = 2mde—dml (gi,)%L Zi{1+0(Z3)}, (8.15)

U:] ©(yy)

_ ~.{'ﬂ(yl){ — elmi __3[ ¢ W,(yl) § . (;% 3 }
and As(y) = I‘D(yl) l—e™Z—2 T T yy) =1 07 UiGz(yl)]+0(Z InZ);. (8.16)

It is also of interest to consider the limiting form of equation (8.13) as « and ¢ tend to zero;
for it is this limit which determines the asymptotes to the upper and lower branches of the neutral
curve, at least for flows without an inflexion point. In this limit we have

¢ (1) = — (/U {1+ 0(0)},

#89 (y3) = 1+ 0(clne) +im(U{|U2)c {1+ O(c)},

¢ (1) = 1+ 0(c),

¢ (1) = (Ur]U7) Inc+0(1) —im(U{[UY) {1+ 0(c)},
Go(yy) = =128 (U3/e)}+0(c) and 2 =Z{1+0(c)}. (8.18)

If we now let X = (I,/U}) (a?/c), where X remains of order unity as « and ¢ tend to zero, then
after some manipulation, we find from equation (8.13) that

(8.17)

1= X—in(U} L] U)X = f(Z) (say), (8.19)
1 —m—}e~¥ Z—2 cos (E— 4m)
here Z) = 1
wher f( ) 14+m—te-dmiZ-% {51n —_ Z"T) 41 E-1cos (: _ i‘lT)} (8'20)
and B =3Zbelm, (8.21)

and we have now dropped the error estimates. The right-hand side of this equation bears a
remarkable but not altogether unexpected relationship to the asymptotic expansion of the
well-known Tietjens function F(Z) defined by (cf. Hughes & Reid 1968)

Ay(Zem, 1)
Z e 4] (Z e, 1) (8.22)

F(Z) =

32 Vol. 268. A,
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342 W. D. LAKIN AND W. H. REID

In the sector —3m < phZ < %m, the asymptotic expansion of F/(Z) in the complete sense is
given by

1 —mriedmZ—2 =-1 in (B -1
F(Z) = ™ 1e 'Z 3{vlc.os (.- ;;'rr)+vzsm(’q 4Tl')}’ (8.23)
14+m~4 e ™ Z-Hu, sin (B — }r) —uycos (B — 1)}
where uy, u,, v4, v, are asymptotic power series, the leading terms of which are given by
U =1+0(E™?), u,=2=4lE"1+0(E"
= 140@), w5 140E, ) 520
vy =1+0(E?), v,=13E1+0(E?).
F(Z
4 @D 45
0.3
Fi.fi
0.2
0.1
! | ! ! ! | y
0] 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Fl‘ 1fl'
2
-0.1%

Ficure 3. A comparison of f(Z) with the Tietjens function F(Z).

[Additional terms in these asymptotic power series are given by Luke (1962, pp. 137 and 139).]
A comparison between f(Z) and F(Z) is shown in figure 3. Equation (8.19) is, of course, only
relevant when the imaginary part of f(Z) is small and this is seen to occur when Z—+0o or
Z—>7Z, = 2.380, When Z - o0,

X1, ie o~ (LU and —mw(U,LJUB)a? ~ 27324,

ie. R ~ w2 (U U2 I3) a1t which is simply the asymptote to the upper branch of the neutral
curve. When Z—Z,, however, X—>1—Re{f(Z,)}, where Re{f(Z,)} = 0.5797, and along the
lower branch of the neutral curve we have

¢~ 2.379 (L|UDe? and R ~ 1.001 (U}5[I3)a~". (8.25)

For comparison we may note the corresponding numerical values associated with the Tietjens
function: Z, = 2.297 and Re {F(Z;)} = 0.5645. Furthermore, the exact behaviour of the lower
branch of the neutral curve, which requires the use of inner expansions for the solutions of viscous
type, is of the form given by equation (8.25) with the numerical coeflicients replaced by 2.296
and 1.002 respectively.

It may appear somewhat surprising that a theory based entirely on the use of outer expansions
should yield such good approximations to the lower branch of the neutral curve. This success is
apparently due to the fact that Z > Z; and that when all expansions are defined in the complete
sense Z, may be considered large.

One further aspect of the characteristic equation that requires discussion concerns the relation
of the foregoing results to the Poincaré form of equation (8.6). If the recessive terms on the left
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hand side of that equation and the balanced and recessive terms on the right-hand side are
neglected, then we obtain the usual Poincaré form

() Folw)
O(y) ~ Boln)’ (8.26)

This equation can also be written in the more explicit form

‘z%%((yy—f)) — _etMZE1310(ZHnZ). (8.27)
The corresponding Poincaré form of equation (8.13) is simply A,(y;) = 0, and on comparing
equations (8.13) and (8.27) we see that they differ by a term involving G,(y,). This difference is,
of course, a direct consequence of the way in which we have ordered the terms in equation (8.13)
and would appear to be inevitable. Thus, we regard equation (8.13) as providing a first approxi-
mation to the characteristic equation in the complete sense, whereas equation (8.27) provides a
second approximation in the Poincaré sense.

9. RESULTS AND DISCUSSION
To provide a direct comparison between the two approximations to the characteristic equation,
equations (8.13) and (8.26), we have made a calculation of the neutral curve for plane Poiseuille
flow. For this flow we have U(y) = 1—y% y; = —1,y, = — (1 —¢)% and y, = 0. We also have

(101, 23 ., 23 ¢ 1+
= U S s 12
Gy(yy) iU, {24 chtore %+2 T, T an(l—c)} (9.1)
A 1+\/C
and 2= (aR)}{3u(c)}} where p(c) = Jo—(1—¢)In ="~ (9.2)

VA —e)’

The computational procedure used to solve equation (8.13) was similar to the one described by
Hughes & Reid (1968) and need not therefore be discussed in detail. The results are shown in
figure 4 where they are also compared with the neutral curve obtained from equation (8.26)
(Reid 1965).

Both approximations to the characteristic equation must, of course, yield an asymptote to the
upper branch which is exact, but the asymptotes to the lower branch are vastly different. The
lower asymptote obtained from equation (8.26) has long been known to be spurious and it is
perhaps even accidental that equation (8.26) leads to a lower branch at all. On the other hand,
the lower asymptote obtained from equation (8.13) is virtually indistinguishable from the exact
result but such close agreement must also be considered at least partly accidental. On the whole,
however, it would appear that a first approximation to the characteristic equation in the complete
sense provides a substantially better approximation to the neutral curve than a second approxi-
mation in the Poincaré sense.

Finally, we should like to add a few remarks concerning the comparison equation method
itself. As previously mentioned in the Introduction, this method has been developed to provide
approximations that are uniformly valid in a bounded domain containing one critical point and
to provide an algorithm for obtaining higher approximations. While these aims have perhaps
been achieved in a formal sense, the method has not heretofore been applied in any great detail
and the present analysis suggests some important limitations on it. The uniformity requirement
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344 W.D. LAKIN AND W. H. REID

can, of course, be satisfied by using the exact solutions of the comparison equation for which
integral representations are known. But the approximations which result from this procedure
have a very complicated form and are of only theoretical interest. If, however, we relax the
uniformity requirement as we have done in this paper, then it becomes of great importance to

T

1.0

T T T1TTT]

<o
I

0.01 1 [ AR A | ) [ N O B 3
10 2 3 5 1OOR%' 2 3 5 1000 2

Ficure 4. A comparison of the curves of neutral stability obtained from a first approximation to the characteristic
equation in the complete sense (curve 1) and from a second approximation in the Poincaré sense (curve 2).

The circled point denotes the exact value of the minimum critical Reynolds number obtained by direct
numerical integration (Reynolds & Potter 1967).

consider Olver’s concept of completeness. Ideally this would lead to a theory of error bounds
which would then provide a rigorous justification for the present theory. Even after having
relaxed the uniformity requirement in this way, the problem of obtaining higher approximations
still remains quite formidable and requires the determination not only of higher approximations
to the solutions of the comparison equation but also of additional coefficients in the expansion
(3.4). These difficulties with the comparison equation method have often prompted the hope that
simpler methods of approximation could be devised which would lead to approximations valid
in a bounded domain containing one critical point and which would permit the easy and
systematic determination of higher approximations. By using the method of matched asymptotic
expansions along the lines discussed by Eagles (1969), together with the idea of completeness
discussed in this paper, we believe that a relatively simple theory can be developed which will
meet these requirements.

We are grateful to Dr T. H. Hughes for providing us with his calculations of f (Z). The research
reported in this paper has been supported in part by the National Science Foundation under
grant no. GP-8620.
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APPENDIX. THE SOLUTIONS OF THE COMPARISON EQUATION
In this appendix we wish to define certain standard solutions of the equation
et — (qu" + o’ + pu) = 0, (A1)

which serves as the comparison equation for the present theory. This equation has been studied
previously by Rabenstein (1958) for fixed values of @ and £. In the present discussion, however,
we shall let « and £ depend on € in the manner [cf. equations (3.2)]

a=o0+... and f=pFy+pe+...; (A2)

for it is this dependence of @ on € which gives the problem its distinctive character. We also wish
to have all of the asymptotic expansions valid in the complete sense of Olver and this requires an
appropriate restriction on the domains of validity of the expansions. To simplify this discussion,
we shall consider only the case of neutral stability for which

phf, =0 and phe= —}m. (A3)
\Sf_/

loX C;

Ficure 5. The paths of integration in the #-plane. The heavy lines denote branch cuts.

Exact solutions of equation (A 1) can easily be obtained by the method of Laplace integrals in
the form

f 1e=Zexp (gt —1e33 — 1) di, (A4)
c

where the path of integration C must be chosen so that
[t exp (7t — 4 — ft- )] = 0. (A5)

The integrand in the representation (A 4) will, in general, be multiple-valued and it is con-
venient, therefore, to introduce a cut into the #-plane running from the origin to infinity along
the ray ph¢ = }m. The admissible paths of integration can then be divided into three types:

(a) Three Airy-type paths (Cj, Cy and Cj) that run from infinity to infinity as shown in
figure 5. The solutions associated with these paths are recessive in the sectors Sy, S, and S; of
figure 1 respectively.

(b) One path (I,) that leaves the origin with Re (¢) > 0, circles the origin, and then returns to
the origin again with Re (#) > 0 as shown in figure 5. The solution associated with this path is
well-balanced, i.e. it is balanced for all values of ph 7. 7

(¢) Four paths (I, I, I; and 1) that leave the origin with Re (¢) > 0 and run to infinity as
shown in figure 5. The solutions associated with these paths are purely balanced in the sectors
T,, T,, T3 and T, of figure 1 respectively.

We thus have eight solutions associated with these eight paths and, since equation (A1) is of
only the fourth order, they must be related by four exact connexion formulae.

32-3
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346 W.D. LAKIN AND W. H. REID

The solutions A;(n; e, B, €)

Consider first the solution associated with the path C; and define a standard solution

Al (77; o, ﬁa 6)
1

by the relation Ay (p;a, B, €) = 2mrie Cil)

t~2exp (gt -3 — pe=) di. (A6)
To obtain the inner expansion of 4, (9; a, f, €) welet { = 5/e and set s = ¢t so that equation (A 6)
becomes

dylpsanfie) =g o [ sotexp (G-de—per s (A7)

2171

where C;(s) is the usual Airy function path in the s-plane. Next expand e=#¢ in a power series in
powers of 1/s. This series converges in any domain bounded away from the origin and, since the
remainder of the integrand is uniformly bounded on C(s), we may therefore integrate term-by-
term to obtain

A pe) = gz £ S0 [ ot (-4t ds A

21ri

On further expanding s* and f" according to equations (A 2) we obtain the required inner
expansion in the form

Ay (50, B, €) = 7 {A1(§ 1) + Boedy (6, 2) + 305624, (5, 3) + O(e%)}, (A9)
where (cf. Hughes & Reid 1968)

46 = greolprmi] [ srrep@-inds (AL

The outer expansions of 4, (; «, f, €) must, of course, exhibit the Stokes phenomenon. In the
sector — g < ph# < 4, the required outer expansion can be obtained either by applying the
method of steepest descents to the integral representation (A 6) as Rabenstein (1958) has done or
by re-expansion of equation (A 9). On noting that

Ay (§,p) =y Lierexp (—30°) {1 — (F +p+19%) £+ 0(£9)] (A1)

in the sector |ph{| < £, this latter method immediately gives

Ay (30, B, €) = frbemethytexp (—geigh) {1 Cfdn -y D) el + O} (A12)
The outer expansion of A4, (y;e,f,€) in the sector —3w < phy < —§w contains dominant,
balanced and recessive terms. It cannot be obtained by re-expansion of equation (A 9) since that
fails to give the balanced term correctly. It can be obtained, however, either by a second appli-
cation of the method of steepest descents or, more simply, by use of the connexion formulae which
will be given later.
The solutions 4, and 4, associated with the paths C, and C; are defined in a similar manner.
They can be expressed in terms of 4, by means of the relations

Ay (30, B, €) = eHWA, (¥t o, fetm, e)} Al
and Ay (300, , €) = i A, (5, i o), (A13)

and the corresponding inner and outer expansions then follow directly from equations (A 9)
and (A 12). For example, the outer expansion of 4, in the sector —§w < ph#y < — 1 is given by

Ay (3o, By €) = ikmEeetiptexp (+3ednd) {1+ (%t — By ) d+0(e®)).  (Alg)
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The solution By (y; e, 3, €)

Considernext thesolution associated with the path /,and define astandard solution B, (; a, S, €)

by the relation

By (g5, B, €) 1 2exp (nt — 133 — ft71) di. (A15)

21Ti I4(t)

For the present purposes we require only the outer expansion of this solution, and by a slight
specialization of Rabenstein’s results we have

By (130, B, €) = (7/Bo)} Iy (265 13) + O(e¥), (A 16)
where J; (2 i 7%) is the usual Bessel function of the first kind.

The solutions By, (; «, f, €)
Consider now the solution associated with the path 7; and define a standard solution
By (050, B, €)
. 1
by the relation By (g5, 0, €) = T-Hf t*2exp (gt —4e33 — fi1) di. (A17)
Is(t)

The solutions B,, B, and B, associated with the paths I;, I, and 7, are defined in a similar manner.
The inner expansions of these solutions have unusually exotic forms but they are not needed for
the present theory and a full discussion of them would be much too lengthy to give here. The
outer expansion of By in the sector in which it is purely balanced can be obtained without diffi-
culty, however, by the method described by Rabenstein and we find that

By (ns0, By €) = — (1/Bo)d HP (258 1%) + O(¢?) (A18)

in the sector — 21 < phy < —}mw, where H{® (24 %77%) is the usual Hankel function. The outer
expansion of By in the sectors T, and T, will be obtained later by use of the connexion formulae.

The exact connexion _formulae

By applying Cauchy’s theorem to the paths of integration shown in figure 5, we obtain the four
exact connexion formulae 9¢A,— By+ By = — 2B,

2¢4,— B;+ B, = 0,
2¢d3— B;+ B, = 0,

and B, = B, et?mie,

(A19)

On adding the first three of these equations and then eliminating B,, we obtain the additional

relation A+ A+ 4y = — 1 {By—1(1 —e2m) B}, (A 20)

which is especially useful in obtaining the outer expansions of the solutions 4, (k = 1,2, 3), in
the sectors T, respectively.
Thus, from equation (A 20) we have
Ay (1;0, 8, €) = ymb ety iexp (—Fedpl) {1 - (3841 — 1) eb + O(e%))
— < {IB) Ay (288 78) + 0(e9)) —ifm oo rbyEexp (+ oty
< {1+ (578 = Bot) ¢k + O(e%)} (A21)

in the sector T;(—§m < phy < —§m). The dominant term in this expansion is, of course, simply
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the continuation of equation (A 12). The expansion also contains balanced and recessive terms,
however, and is thus complete in the sense of Olver. To this order of approximation, B, makes no
contribution to the balanced term in the expansion. In a similar way we obtain

4y (750, , 6) = igmr e tptexp (+5eiph) {1+ (2~ fon) el + 0(c)}
— (580} Ty (265 1%) + O(e%)} — 4 et Lexp (—3e b o)
< {1 = O =2 = fon1) ek + 0(e)} (A22)

in the sector 7, (—3m < phy < ¥m).
The outer expansions of By in the sectors T; and T, can be obtained by using the first and
second of the connexion formulae (A 19) and we then find without difficulty that

+26A2(77;063ﬁ>€) (77€T1)>
By (50, B €) = — (] Bo) L HP (2p3 %) + O(e%) +4 — 264, (30, ) (7€ Ty),p  (A23)
0 (WET:’,),

where —3m < phy < ¥ and, for economy, we have written 4; and 4, rather than their outer
expansions (A 12) and (A 14). In deriving these results we have also used the fact that

By—2B, = — (1/Bo)t H (28§ 9¥) + O(e?)

in T,. Thus, the outer expansion of By is purely balanced in T, dominant with balanced terms in
S; and balanced with recessive terms in I — (S; U T).

The solutions u;, (7))

From the set of eight solutions discussed above we now wish to pick a fundamental set of four,
which will be denoted by u,, (%), for use in the construction (3.4). Our choice is primarily influenced
by the location of the points at which we must impose the boundary conditions. Since, in the case of
neutral stability, one boundary point lies in S; and the other in S, we shall require that the
solutions u;, () be ‘numerically satisfactory’in S; U S,, i.e. that they differ by the largest possible
factorin 8; U S, (cf. Miller 1950). A set of solutions which satisfies this requirement is easily seen
to be {B,, B;, 4;, 4,} where we can, of course, add to By an arbitrary multiple of B,. Thus we
define the fundamental set of solutions

u () = By (n;0, By ),
uy (1) = B(2y —1+log f+1i) By (15 2, f, €) + fiBy (75 2, s €),
(A 24)
us (1) = 4i (0; 2, B €),
and u4(77) = A2 (77;“9ﬁ3 6))
where y is Euler’s constant. The outer expansions of #; and u, can conveniently be written in the
f
o (1) = uf? (1) + O(c") (A25)
and +2mifyed, (150, 6,¢) (€T,
uy () = wi® () + 0(€®) +1 —2mifoedy (150, B, 6)  (1€'Ty), (A 26)

0 (nET:i),
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where ulo (77) =17 % i:}_)k_ (18 n)k (A27)
! Kok (B 1)1V

() =14 pn 2 gt sl 2 0= oA ) ny (a2

and ¥(z) = I"(z)/I'(z) is the digamma function. In equation (A 26) we have again written 4,
and 4, rather than their outer expansions (A 12) and (A 14). With », and u, defined in this way,
there is then a certain parallelism between #{® and y{” and between «{® and x{?. Thus «{® and «{”
satisty the reduced form of the comparison equation yu” + fyu = 0, their Wronskian has the value
W (u{®, u{®) = —1 and the regular part of #{® contains no multiple of {0,
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